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Many natural implicit discretizations of the Navier-Stokes equations can, with the proper 
identifications, be regarded as systems defining flows on associated networks. In this paper WE 
describe a method which, through the introduction of a different set of network variables, 
significantly reduces the size of the original system. The method avoids the need to compute 
pressures, and produces velocities that are exactly discrete divergence free. We illustrate the 
technique by applying it to the implicit finite difference equations of Krzhivitski and 
Ladyzhenskaya and an implicit MAC-like finite difference system. 

1. INTR~OUCTI~N 

In 1966 Krzhivitski and Ladyzhenskaya [3,4] announced a finite difference 
scheme for the Navier-Stokes equations. As a Navier-Stokes discretization, it 
possesses many desirable theoretical properties. It is linear, even though the 
convection terms are included. Its difference equations possess a unique solution 
which is unconditionally stable in the discrete L, norm. Most importantly, 11 
generates functions which converge to a weak solution [5] of the continuous problem 
as the discretization parameters tend to zero. 

Yet with all of this to recommend it, the scheme does not seem to have been used 
to any extent as a computational tool. The reason for this is suggested by Chorin [ 11 
who states that the scheme “... is not readily applied in practical calculation.fg This 
opinion is echoed by Jamet et al. [ 21 when they write that the scheme “... conduirait i 
resoudre a chaque pas dans le temps, un systeme complexe d’tquation’s lidaires.” 
Apparently, the linear system generated by the difference scheme is too “complex” to 
be efficiently solved at each time step. As we shall see in the next section, the 
difference equations are natural discretizations of the differential equations, and so in 
a sense are no more complex than the original equations. Rather, the complexity 
results because all of the discrete primitive unknowns, pressures and velocities, 
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appear simultaneously in the system. In fact in two space dimensions, if there are N 
mesh points at which the solution is to be determined, then for large N one must 
solve O(3N) non-trivially coupled equations at each time step. This should be 
compared with the O(N) equations of the conventional explicit. MAC method [6]. 

One of the aims of this paper is to show that by the use of elementary network 
theoretic properties of the finite difference mesh, the original system may be 
transformed into a completely equivalent reduced system involving only O(N) 
equations and unknowns. The new unknowns are termed dual uariables because of 
their relationship to the dual network of the finite difference grid. Once the dual 
variables are known, the original primitive variables may be recovered by simple 
back substitution. With this device then, the Krzhivitski-Ladyzhenskaya system may 
be regarded as equivalent in terms of size to the MAC system. 

In the next section we present the Krzhivitski-Ladyzhenskaya equations and 
survey their properties. Section 3 contains the network theory and the transformation 
to the dual variable system. In Section 4 we show that this same idea may also be 
applied to a linearized implicit MAC-like system, and in Section 5 we generalize the 
method to treat inhomogeneous boundary conditions. Section 6 contains the details of 
a driven cavity computation using the dual variable MAC system of Section 4. The 
final section consists of additional remarks and observations on the method. 

2. THE KR~HIVITSKI-LADYZHENSKAYA (K-L) EQUATIONS 

Let R be a bounded region of the x-y plane with boundary 3R and let [0, T] be a 
finite time interval. If Q E J2X[O, T], then the continuous problem is to find a velocity 
vector V E (u, v): Q -+ R2, and a pressure p: Q--t R, which satisfy the Navier-Stokes 
equations,, 

i?V +(V.V)V=-Vp+pV=V+F, 
at 

v*v=o, 

(1) 

(2) 

and the boundary-initial conditions 

V( -0 aa- 3 (3) 
v Irzo = v". (4) 

Here for convenience we have assumed that the constant density is unity. 
Furthermore, ,D is the viscosity, V = the gradient operator, F = (e,f) the (known) 
body force, and V” an initial velocity field which vanishes on 8.0 and satisfies (2). 

To solve this problem we follow Krzhivitski and Ladyzhenskaya [3,4] and overlay 
the x-y plane with a mesh of lines x = kh, y = kh, k = 0, f 1, f2,..., where h > 0 is the 
mesh spacing. Furthermore, we let At = r/M, M being a positive integer. 
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If w  is any scalar (or vector) function defined on the mesh points at time ievels 
0, At,..., M At, we denote its value at x = ih, y = jh, t = m A& by u$- We also define 
the following mesh operators: 

The reader will recognize these, respectively, as the identity, forward shift, backward 
difference, and second-centered-difference operators in the x direction. The 
corresponding y directional operators S,, V,* and S:, as well as the backward time 
difference operator V,, are analogously defined. Moreover, A, = S,O, and A,, = S,V; 
are the forward difference operators, and V, = (V,, V,,) is the discrete gradient. 

With the aid of these operators we may write the K-L discretizations of (I t(2) as 
follows: 

$ (A& + A,$) = 0, m = 1)~ ..) M, jb’ 

where of course 17z = (u;, u;), FG = (ez,f z). 
The spatial domains of definition of the equations are important. To describe rhem 

we introduce the (closed) mesh squares ~ij = [ih, (i + l)h] X [ jh, (j $ l)hj: i’, j = 0, 
It l,..., and define a, = Uoii, where the union is over all aij CZ .C? U ,X2. Then (5) 
holds at the interior mesh points of fib and (6) holds at those points of a,,,, where a 
pressure p; is introduced by virtue of (5). In view of (3), we also set V; = 0 on Z-at, ~ 
the boundary of Dh. We assume that a,, is mesh point connected in the sense that 
each pair of distinct mesh points in fib where (6) holds may be connected by a path 
of mesh square sides lying in the interior of fib. 

There are now exactly as many equations as unknowns. I-Iowever, Eqs. (6) are not 
independent since they sum identically to zero. Therefore, the additional equation 

s p;=o, 
i.i 

is appended to the system. 
In Fig. 1 we have illustrated a simple region in which 62, consists of k i mesh 

squares and is mesh point connected. Equation (5) holds at the mesh points marked 



186 AMIT, HALL, AND PORSCHING 

FIG. 1. The domain of (5) and (6). 

0, while (6) holds at those points plus the points marked 0. Thus there are five 
discrete momentum equations (5), eight independent discrete continuity equations (6) 
and Eq. (7). Because of the boundary conditions, there are correspondingly five 
unknown velocity vectors and nine unknown pressures (i.e., 19 unknown scalars). 

The unique solvability of the K-L equations, as well as their unconditional 
stability follows from an equality involving the discrete L, norm 1) . I(,, induced by the 
inner product, 

(U, V), z h2 c u, - v,, 
id 

where U and V are any 2-dimensional vector functions defined on the mesh points of 
J?~. Utilizing certain discrete analogues of integral identities involving a solution of 
(l)-(4), Krzhivitski and Ladyzhenskaya derive the following equality for any velocity 
vector V satisfying (5) and (6), 

If (5) and (6) constitute a homogeneous system, then Fm = V”-’ = 0, and it follows 
immediately from (8) that V”’ = 0. But then (5) implies that all the pt are equal, and 
by (7) this common value must be zero. Therefore, by the alternative principle for 
linear systems, the K-L equations have a unique solution. Furthermore, (8) yields 

llVrnll* < HVm-% + 2~~llWltI~ 

and from this we have 

lIVml14Voll,n +2 2 IIFkllJ~ 
k=l 

< IPoll + 21= IIF dt + o(l), 
0 
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where // . /I is the I,, norm on a. This last inequality is a statement of the uncon- 
ditional stabilir~~ of the K-L equations. 

The proof that the approximations generated by the K-L equations converge to the 
weak solution of (l)-(4) involves detailed function theoretic arguments and is too 
lengthy to outline here. We remark, however, that the keystone of the proof is again 
the equality (8). See [4]. 

It is clear that if 6, contains N mesh points, then the size of the K-L system is 
Ci(3N). Moreover, the subsystems of (5) and (6) do not uncouple in any way. 
Contrasted to this, the usual MAC equations [6] require the solution of a discrete 
Poisson equation for the pressures, and its size is only O(N), En the next section, we 
show how to transform the K-L equations into an equivalent system whose size is 
also only O(id). 

3. THE K-L DUAL VARIABLE SYSTEM 

Given the K-L equations of the previous section, we can define an associated 
directed network ,I’ as follows. The nodes of Jr are isomorphic to the mesh points 
(ih, jh) of -oh where (6) holds. The directed links of JY are isomorphic to certain 
ordered pairs of network nodes ((i - 1)/z, jh) + (ih, j/r) or (ih, (J - l)h) + (ih, .$I) * 
Link(,(i - l)h, jh) -+ (ih, jh), which is directed awaq’ from node ((i - l)h, jh) and 
rona& node (i/z, j/r), is in J’- precisely if U: is not determined by the boundary 
conditions. Similarly, link(ih, (j - 1)h) + (ih, jh) is in J’ if the boundary conditions 
do not determine LIZ. Since we have assumed that fib is mesh point connected. the 
network ,..9^ is connected. 

With ,A’ defined in this manner we say that the state at node (ih, jh) is pz, that the 
flow on linkj(i - l)h, j/z) + (ih, j/z) is ut, and that the flow on link(ih, (j - 1 jh) 3 
(ih, jh) is vt. All of this is succinctly illustrated in the molecule shown in Fig. 2. 

Now suppose that ,,I’ contains N nodes and L links. Then. we can put its nodes and 
links into l-l correspondences with the first N and L positive integers, respectively. 
This induces a relabeling of the states and flows, say {pc) t-) {py,..., &j and 

FIG. 2. Defining molecule of K-E network. 
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{u$ z$} +-+ (w': )...) Iv;}. The body forces are then also relabeled {ez,f$} tt 
{ gy,..., gpi. Let A = [a,,] be the N x L node-link incidence matrix of JY. That is, 

a,, = fl if link I is directed away from node n, 

E- 1 if link I is directed toward node n, 

Es 0 otherwise. 

It is a standard result of graph theory [ 71, that A has rank N - 1. Furthermore, from 
its definition it follows that (6) may be written as 

AW” = 0, (9) 

where W”’ = (w?,..., IV,“)‘. 
The L-dimensional linear system (5) may also be written in vector form as 

~(W”-Wm-l)+B,_IWm=~ArP~+gm, (10) 

where Pm = (py ,..., P:)~, gm = (gy ,..., gz)‘, and B,-, is the L X L matrix which 
results from the combined convection and viscous stress discretizations. Each row of 
B,-, contains no more than five non-zero entries. The general form of the diagonal 
entry is 

while the off-diagonal entries are all of the form 

-!C*‘,qr-1, 
h2 2h 

where @‘-i is one of the velocities &‘-I, u$-‘, nycrfj or OcJ:+il , the minus sign being 
used with either of the first two velocities and the plus sign with the last two. 

Now let C be a fundamental matrix of JY. That is, C is a L x (L - N + 1) matrix 
whose columns are linearly independent and are null vectors of A. Matrix C then has 
the following properties: 

(i) AC = 0, i.e., C is orthogonal to A, 

(ii) If AZ = 0, then Z = Cy for some y E RL--IStl, i.e., the columns of C form a 
basis for the null space of A. 

With this in mind we rewrite (10) as 

Q,,-,Wm=AtATPm+bm, (11) 
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and 

Q,-, = h(I + AtB,-,) 

b” G h(Wm-’ -+ dr 9”) 

contain only known information. Multiplying (11) by CT and using the orthogo~a~iKy 
of A and C, we obtain 

C’Q,- L Wm = Crbb”, 

But by (9) and property (ii) of C, 

for some ym E RLeN’ i. Thus, 

C'Q,- I Cy" = C=b". 

Since L = 0(2-V), the size of the system (13) is O(N). Once ym is known, the 
velocities are easily recovered from (12). If desired, the pressure differences AT 
may be obtained from (11). These quantities, along with (7) then determine the 
pressures. Note, however, that the pressures are not needed EO advance the velocities 
from time level to time level. 

Note further that (6) is satisfied when W” is constructed from (12) using apa) 
vector ym. It follows that the velocities obtained from (12) are exactb? disa~-tr~e 
divergence free in the sense that round-off errors in the solution of ( I3 j do not affect 
the degree to which W” satisfies (6). 

As we shall see below, matrix C may be constructed so that there are at most two 
non-zero entries in any row. Moreover, these entries wili be either +1 or -I. With 
this choice of C, the only accuracy limitation in (12) is that associated with one 
floating point subtraction. 

The unique solvability of (13) follows from that of the K-L equations and the 
following lemma. 

LEMMA. Every solution of (9) and (11) determines iz solution Df (13 j. Converssei.s, 
every solution of (13) determines a solution of (9) aizd (1 I )~ 

Pp1ooJ The first part follows from the construction of (13 j- Conversely, if ;im 
solves (13) and W” = Cy”, then AW” = 0 and 

C’[Q,_, W” - b”] = 

Hence Q,- 1 W” - b” is in the null space of C7. But the dimension of this ma8 space 
is L-@--N+ 1)=/V-- 1. Since the rank of AT is Id- I and since CTAr= 
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(AC)T = 0, the columns of AT span the null space of CT. Therefore, there is a vector 
At P” E RN such that 

Q,- 1 W” - b”’ = A T(At P”). Q.E.D. 

The remaining question concerning the reduced system (13) is the construction of 
the fundamental matrix C. But this is easily accomplished using another well-known 
graph theoretic result involving the elementary cycles of J? These are the simple 
closed paths in ;Y which do not surround any other closed paths in JIT. Loosely 
speaking they are the boundaries of the holes in JK If C = [elk], then we generate the 
kth column of C by walking around the kth elementary cycle of J’ in (say) the coun- 
terclockwise direction (the manner in which the cycles of JV are numbered is 
irrelevant). Then 

Clkf +l if link I is directed away from the last node 

we have passed through, 

E -1 if link 2 is directed toward the last node 

we have passed through, 

f 0 otherwise. 

It is well known [ 71 that this procedure will generate exactly L - N + 1 independent 
columns and that the resulting C is orthogonal to A. 

It is not difficult to see that if C is constructed in the above manner, then the rows 
of C’Q,,- 1 C generally contain at most 13 non-zero entries, and the structure of the 
non-zero couplings resembles that of the discrete biharmonic operator. This is 
illustrated in Fig. 3 and shows the unknowns that appear in the equation for y:. This 
figure also shows the elementary cycles corresponding to the y’s. Note that the arrow 
heads point at the nodes towards which the link is directed. 

Since Jr is a planar network, it has a dual, ,K* [7]. The y’s may then be 
associated with the states of A’* and, consequently, we call them dual variables. 

FIG. 3. The 13 point coupling of Eq. (13). 
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Figure 4 gives the network JV- constructed from the region 6, of Fig. 1. With the 
node, Link and cycle labelings of this figure: the incidence and fundamental matrices 
A and CT are those given below, 

A= 

-1 0 0 0 o-1 0 0 0 0 
l-l 0 0 0 0 -1 0 0 0 
0 o-1 0 0 1 O-1 0 0 
0 0 l-l 0 0 1 0 -1 0 
0 0 0 0 -1 0 0 1 0 -1 
0000000001 
oooolooolo 
0001000080 
o1oooooooo 

r-1 0 1 0 0 1 --E 9 0 01 
p-E 

i 0 O-l 0 1 0 0 1 -I 01. 

cOne verifies directly that AC = 0. Furthermore, since L = 10, N = 9, the number of 
unknown primitive variables (i.e., pressures and velocities) is t + M= 19 as 
previously noted. However, the number of dual variables is L -A’+ ‘i = 2. 

4. ANOTHER APPLICATION 

It should be clear from the previous section that a dual variable system exists for 
any system of Navier-Stokes difference equations having a directed network ,,i’ on 
which: 

(i) the discrete continuity equations may be interpreted as Kirchhoff node 
laws; 

(ii) the discrete momentum equations may be interpreted as generalized Ohm’s 
laws relating the link flows to pressure drops across the links. 

FIG. 4. The K-L network of Fig. 1. 

58L/40/1-13 
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As another application of this general observation, we consider a linearized 
implicit MAC-type discretization of (l)-(4). The explicit version of these equations 
was studied in [8-g]. Utilizing the notation of the previous sections, we have 

$ (AxUc l/*,j + dy vzj- I/*) = O, (16) 

where 

6(Z) = 0 if Z<O 

= 1 if Z > 0, 

fip-1 v + S.J (I+ z-l/Z,j= 9 

2 2 
“yllj- ’ 1,2, 

-m-1 
ui,j- l/2 = 

(I+ s,> (I+ q up-- 1 
2 2 I 1/2,j--1’ 

Equations (14) and (15) hold, respectively, on the sets {((i - 1/2)h,jh) E ai}, and 
{(i/z, (j - 1/2)h) E ai}, where az = fib - afih. Equation (16) holds at points where a 
pressure p; occurs because of (14) or (15). Near afih (14)-( 16) introduce velocity 
approximations at points on and exterior to aah. In accordance with (3), these are 
set to zero. 

As before, a normalizing equation such as (7) is required to define the pressure 
field uniquely. 

Note that the convection terms are discretized by means of “upwind differences,” 
and that the pressures, x-directional, and y-directional velocities are defined on the 
familiar interlaced grids of the MAC method. 
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FIG. 5. Defining molecule of MAC network 

For these equations the directed network ,/I’ has as its nodes the mesh points 
corresponding to the points where (16) holds. The links of J’ are given by the sets 

{((i - l)h, jh) -+ (ih, jh) / ((i - 1/2)/z, jr) E a$ 

and 

{(ih, (j - l)h) -+ (ih, $2) / (ih, (j - 1/2)/z) E ?n”,i. 

The flows and states of ./t’” are then defined in an obvious manner. Figure 5 illustrates 
the molecule for this network. 

Equations (14)-( 16) may now be recast in the form (9) and (11) and the dual 
variable system follows as before. 

With regard to the solvability of this system, of course the lemma of the previous 
section remains valid. However, there is no equality anaiogous to (8) from which to 
establish its unique solvability via that of (14)-(16). By examining the dual variable 
system directly, it can be shown as in [ 111 that for fixed h a unique solution exists at 
each time level provided that At is sufficiently small. In practice this sufficient 
ccndition appears to be unnecessarily restrictive. 

In Fig. 6 we illustrate a labeled MAC network for the region 0, of Fig. 1. This 
should be compared with the earlier K-L network of Fig. 4. Since for the MAC 

FIG. 6. The MAC network cl Fig. 1. 
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network L = 15: N = 14, the number of unknowns in (14)-( 16) is now 29. However, 
the MAC dual variable system contains only two unknowns as before. 

5. INHOMOGENEOUS BOUNDARY CONDITIONS 

Most practical problems in computational fluid dynamics involve inhomogeneous 
boundary conditions instead of those given by (3). For example, (3) may be replaced 
by 

v /K! = V”, (17) 

where V* = (u*, v*) is a specified non-zero velocity distribution on X! satisfying (in 
view of (2)) 

f  
u* dy - u* dx = 0. 

a0 

While it is true that this more general problem can in theory be reduced to one with 
homogeneous boundary conditions by constructing a divergence free vector field 
which satisfies (17) (see [lo]), the actual construction may be tedious, and it seems 
desirable to treat (17) directly in the difference equations. 

Moreover, it is sometimes necessary to deal with mixed boundary conditions of the 
form 

V laa, = V*, VW 

P la*z= P”, (18b) 

where p* is a prescribed pressure distribution on X12, Q, fY Q, = 0, and XI = S2, U 
an,. For a reasonable discretization of the problem in terms of the primitive 
variables, it is usually not difficult to account for (18). For example, if the difference 
equations are defined on an approximating region such as fib, then one can translate 
the boundary conditions to afih in some obvious way, say by projection. The tran- 
slation of condition (18a) to L@, defines a set afihr c afih on which the translated 
condition holds, modifies the source term in the discrete momentum equations, and 
introduces a (possible) non-zero source into the discrete continuity equations. On the 
other hand, when (18b) is translated to afih, it defines an analogous set afih, c L+fihr, 
again modifies the sour -:e in the discrete momentum equations, but eliminates a 
continuity equation for every discrete pressure it specifies. Note that if there is any 
such pressure, then (7) is no longer required. Indeed, its retention overspecifies the 
problem. 

Assuming that it is possible to construct a connected network J$ on which the 
difference equations may be interpreted as Kirchhoff node laws and Ohm’s laws, the 
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incorporation of the effects of (18) will, because of the above remarks, generally lead 
to the following revised forms of (9) and (1 l), 

Q,-,Wm=.4tA;Pm +I$, (20) 

where A, and b, are a modified incidence matrix and source vector, and s” IS the 
(non-zero) source introduced by the boundary velocities. 

We can not directly apply the method of Section 3 to produce the dual variable 
system for (19) and (20). There are two reasons for this. First, if s”’ J; 0, then the 
vector W” no longer lies in the null space of A,. Second, if -+‘; has N nodes a%d L, 
links, of which, say L, > 0, are incident on points of aBhs, then A, has full row rank. 
Its null space is therefore of dimension L -NY and the columns of the fundamental 
matrix constructed from the elementary cycles of X* in the manner of Section 3 will 
not in generai span it. In fact, since these cycles will be confined to a connected 
subnetwork of J’i consisting of N nodes and L -L, links, they will provide only 
(IL-IL,)-N+f=((L-N)-(L,-ljb asis vectors, leaving a deficiency of L, --- i 
such vectors. Nevertheless, the procedure of Section 3 can be modified to provide a 
dual variable system in this case. 

The first step in the generation of this system is to obtain a pa~-ticula~ salurion of 
the underdetermined system (19). Such a solution is easily determined by using a 
spanning tree of -,P,, and algorithms for the determination of a spanning tree are well 
known [7]. W”ith the spanning tree available, one sets the velocnies on the links of 
-,PG which are not in the tree equal to zero. Beginning with its outermost extremities, 
one then proceeds through the nodes of the tree. As each node is encountered, one 
Iink velocity is determined from the continuity equation at that node. Certain 
continuity equations may contain extra degrees of freedom (i.e., velocities) due to the 
presence of the specified pressures. These velocities may also be set to zero without 
violating (19). 

Use of the spanning tree in effect permutes (19 j so that it is in upper triangular 
form. Its solution is then obtained by a back substitution process. An example of this 
technique is given below. 

Now let Y” be the particular solution of (19) obtained above. Defining the vector 

Z” = wm - y, (Sl! I 

we have from (19) 

and from (20) 

A+Zm=O, (22) 

Qm-lZm = AtA;Pm $ d”, (2.3) 
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where 

is a vector of known information. Equations (22) and (23) are again of the form (9) 
and (11). Thus, if C, is a fundamental matrix for A,, we find that the dual variable 
system is 

C’Q,- 1 C, y” = CTd”, (24) 

The velocities are then given by 

wm=c*ym+ym. (25) 

It remains to construct the matrix C, . As before, we can obtain (L - N) - (L, - 1) 
of its columns from the elementary cycles of J!$ by the method of Section 3. The 
remaining L, - 1 columns may be generated by the use of pseudo-cycles. These are 
connected paths through JG that begin and end with distinct links that are incident 
on points of a.Gh,. One walks from one end of each pseudo-cycle to the other, and 
uses the prescription given in Section 3 to generate the corresponding column of C,. 
If the links incident on points of afi,,, are ordered so that their link numbers are 
I( 1) ,..., I@,), then for k = l,..., L, - 1, there is a pseudo-cycle, say the kth, that begins 
on link Z(k) and ends on link Z(k + 1). The L, - 1 columns that these pseudo-cycles 
generate are independent since the kth pseudo-cycles contains link l(k + l), and this 
is neither in any elementary cycle of .A;, nor in pseudo-cycles l,..., k - 1. 

To illustrate these ideas, suppose that velocity and pressure distributions are given 
on the boundary of the region of Fig. 1 in such a way that their translation to aa,, 
defines 8fih, as the most northern and eastern segments of afih, and afihz as the 
remainder of aa,,. If we adopt the difference equations of Section 4, then the induced 
network _.Y* is shown in Fig. 7. Note that this differs from the network of Fig. 6 
through the omission of nodes 11 through 14. These nodes are not included in J$* 

0 3 Q 
34 I56 

4 6 
2 7 /I 2 :4 

7 
8 8 

F 
t 

12 

15 qq lo IO 
0 13 

FIG. 7. Modified MAC network. 
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since there is no discrete continuity equation at them. For J$ we have N= il5 
f; = 15, L, = 5. and the incidence matrix is 

-1 1 15 5 5 5 -1 5 5s 5 5 5 5 5 
5 1 5 5 5 5 5 5 5 5 j -I -1 5 1 5 
5 5-r a 5 5 5 5 5 515 5 0 a 0 
a 5 5-l I l-1 5 5 OI 5 5 5 5 5 

A*= a 5 5 5-15 5 5 5 515 5 5 5 5 
5 5 5 5 5-1 a 5 5 515 5 5 5 0 
5555551 1 -1 0 51 Q Q-1 0 
5 5 5 5-1 5 5 5 5 51 5 a 5 5 6 
5 5 5 5 5 5 5 5 1 5 i 5 5-I 5-T. 
5 5 5 5 5 5 5 5 o-11 5 5 5 0 5 

A spanning tree for JIM may be obtained by discarding link 14. Extra degrees of 
freedom are then given by the velocities on links I 1, 12, 13, and 15. When rhe 
velocities on these links are set to zero, (19) may be solved as an upper triangular 
system. In fact, ,Y;l has been labeled so that the submatrix of A, consisting of all its 
rows and first 15 columns is upper triangular (i,e.. The permutation induced by this 
particular tree is the identity). 

Since there is only (L - N) - (L, - 1) = 1 elementary cycle in .,:i ) L, - i = 4 
pseudo-cycles are required to complete the construction of C,. One such set is given 
bv the paths corresponding to the link sets {l E, 2, 1;. { 12, 1 I ,: i 15.9, 14. i2 1 and 
jI3, 151. The resulting Ci is 

5 -1 5 -1 5 1 5 5 5 5 5 5 5 1 57 
-1 15555a555155aa 

c; = 5 5 5 5 5 5 5 5 5 5-l 15 0 a 
5 5 5 5 5 5 5 5 1 5-r 5 5-I ;i 
55555555555515-ij 

Again one verifies directly that A, C* = 5. It follows that there are five unknown 
dual variables for this example. 

6. A DRIVEN CAVITY CALCULATION 

To evaluate the effectiveness of the dual variable approach, a computer program, 
DUVAL, was written which utilizes the equivalent reduced MAC equations 
(i4)-(16) of Section 4. In DLJVAL, these equations are solved directly at each time 
level by a “frontal method” as described in [ 1 I, 141. Inhomogeneous boundary 
conditions are treated in the manner of Section 5. 
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FIG. 8. The driven cavity. 

As a sample calculation, we consider the numerical solution of the familiar driven 
cavity problem [ 12, 131. The boundary conditions for this problem are shown in 
Fig. 8. In (1) we set p = 0.025, which is equivalent to the case of a Reynolds’ number 
of 400. 

For the numerical solution the cavity was divided into 400 uniform mesh squares 
(h = 0.05) so that system (14)-(16) contains 1160 equations and unknowns. In 
contrast, the size of the equivalent dual variable system is L -N + 1 = 760 - 
400 + 1 = 361. Since we are primarily interested in the steady state solution, a 
uniform time step of 20 was used. The calculation started from the null initial 
condition V” = 0, and remained completely stable. 

After 16 time steps, max[jV u.- 1 , 1/2,jl, IVrUi,j-L/2I] < 1.5 X 10e5. Figure 9 shows the 
computed velocity direction field and Fig. 10 the u component of the centerline 
velocity at this time. Also shown in this latter figure is a curve of the same quantity 
obtained by Burggraf [ 151. Although there is general qualitative agreement between 
the two numerical solutions, the DUVAL solution shows considerably more 
dissipation than Burggrafs. This is due to the well known numerical diffusion effect 
introduced by the use of upwind differences for the convection terms. As pointed out 
by Tuann and Olson [13] and others, this effect is particularly severe for the driven 
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FIG. 10. Centerline ve!ocity. 

cavity problem, and we do not suggest that in this case the DUVAL solution Is 
highly accurate. Furthermore, we emphasize that its inaccuracies must be laid at the 
feet of the original difference equations (14)-(16) and not the dual variable system, 
since the latter is generated by-and equivalent to-the former. If desired, the upwind 
differences could be replaced by the more accurate (but less stablej centered 
differences (see Section 7). 

Computation times for this problem were -59 CPU seconds per time step on a 
DEC-1099 computer and -2.5 seconds per time step on a CDC-7600. The code was 
not optimized on either machine. 

7. SUPPLEMENTARY REMARKS 

In keeping with the network theme of this paper, we have identified the y’s with the 
states of the dual network Jt/‘*. However, if J2 is simply connected, it is particularly 
easy to relate them to the values of a discrete stream function. For exampie, for the 
K-L Equations, we may put the columns of C, as generated in Section 3, into a 
natural 1-l correspondence with a subset of the points {(i - l/2, j - 4/2)h), If the 
components of y in (12) are labeled accordingly, then one verifies that (12) is 
equivalent to the equations 

Uij=Yi-I/2,jt1/2-Yi-l/2,j-1/2~ 

vij= Yi-llZ,j-l/2- Yi+2/2.j-l/2* 

Thus, if we define a mesh function w  such that 

Vi- 1/2,j- 112 - -h Yi- 1/2,j- l/2 if yi-llZ.j+Y2 is defined by (12) 

=o otherwise, 
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1 
Vij = --Ax~i-l/l,j-1,2, h 

so that w  is a discrete stream function. A similar result holds for the MAC system of 
Section 4. Note, however, that a discretization of the well-known fourth order 
equation for the continuous stream function [ 131 will not result in the dual variable 
system (13). The implementation of such a discretization requires the setting of 
appropriate boundary conditions for the stream function, which may be the main 
disadvantage of this approach. By comparison, no auxilary conditions are imposed 
on the y’s, since all boundary conditions are applied to the primitive variables in the 
untransformed system. 

Each directed network .,J/ uniquely defines its associated incidence matrix A. 
However, any basis for the null space of A will generate a corresponding fundamental 
matrix C. The procedure given in Section 3 generates a particularly sparse C. 
Moreover, it lends itself to automation and has been included as part of the 
preprocessing stage of the computer program DUVAL, which accepts as input a user 
oriented description of the flow region. 

The theory of dual variable reduction directly generalizes to the case of three space 
dimensions. The primitive and reduced systems contain O(4N) and O(2N) unknowns, 
respectively. One can still use the notion of a cycle to generate columns of C (see 
[ 71). However, since Jr is no longer planar, the definition of an elementary cycle as 
we have given it does not apply. 

Since the subject of this paper is the presentation and development of the dual 
variable method, we have purposely avoided the issue of the solution of the reduced 
system (13). Obviously, many of the variants of Gaussian elimination may be used 
for a direct solution of (13). The frontal method, mentioned in conjunction with 
DUVAL, is such a variant. We found it appealing to use this technique since it 
conserves storage by alternating the solution of system (13) with its generation, and 
this latter task is conveniently associated with a sequential processing of the links of 
X. However, we remark that since lim,,, C’Q,C = hCTC, a positive definite, 
symmetric matrix, (13) should also be amenable to solution by iterative methods 
such as SOR (at least for At sufficiently small). 

Finally, we emphasize that the dual variable method is independent of the type of 
finite differences used to discretize the convection and viscous stress terms in the 
momentum equations. These influence the entries of Q and b in system (13) but not 
its size. In particular, centered differences could have been employed for the 
convection terms in the MAC system of Section 4 without degrading the variable 
reduction capability of the dual variable method. 
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